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Statement of Translational Relevance (120-150 words)
Breast cancer-induced fatigue is a prevalent and debilitating symptom that affects a majority of patients,
leading to early treatment discontinuation and poorer outcomes. Despite its significant impact on patient quality
of life, there are currently no approved therapies for this condition. Our previous work in the clinically relevant
breast cancer patient-derived orthotopic xenograft (BC-PDOX) mouse model suggests that disruptions in the
PPARγ signaling pathway may contribute to the development of cancer-related fatigue. Using this model that
recapitulates the fatigue phenotype observed in patients, we conducted a preclinical trial evaluating the
FDA-approved PPARγ agonist, pioglitazone, as a treatment for fatigue. Our multi-omic analysis of skeletal
muscle from BC-PDOX mice revealed that pioglitazone treatment partially restored dysregulated lipid profiles
and mitochondrial bioenergetic transcriptomic alterations. These findings suggest that pioglitazone may have
potential as a therapeutic option for managing cancer-related fatigue in breast cancer patients.

Abstract (250 word limit)
Breast cancer (BC) is the most prevalent cancer worldwide and is accompanied by fatigue during both active
disease and remission in the majority of cases. Our lab has measured fatigue in isolated muscles from
treatment-naive BC patient-derived orthotopic xenograft (BC-PDOX) mice. Here, we conducted a preclinical
trial of pioglitazone in BC-PDOX mice to determine its efficacy in ameliorating BC-induced muscle fatigue, as
well as its effects on transcriptomic, metabolomic, and lipidomic profiles in skeletal muscle. Methods: The
pioglitazone and vehicle groups were treated orally for 4 weeks upon reaching a tumor volume of 600 mm3.
Whole-animal indirect calorimetry was used to evaluate systemic metabolic states. The transcriptome was
profiled using short-read bulk RNA sequencing (RNA-seq). Liquid chromatography-tandem mass spectrometry
(LC-MS/MS) was used to profile the metabolome and lipidome. Fast and slow skeletal muscle function were
evaluated using isolated ex vivo testing. Results: Pioglitazone was associated with a significant overall
decrease in metabolic rate, with no changes in substrate utilization. RNA-seq supported the downstream
effects of pioglitazone on target genes and displayed considerable upregulation of mitochondrial bioenergetic
pathways. Skeletal muscle metabolomic and lipidomic profiles exhibited dysregulation in response to BC,
which was partially restored in pioglitazone-treated mice compared to vehicle-treated BC-PDOX mice. Despite
molecular support for pioglitazone’s efficacy, isolated muscle function was not affected by pioglitazone
treatment. Conclusions: BC induces multi-omic dysregulation in skeletal muscle, which pioglitazone partially
ameliorates. Future research should focus on profiling systemic metabolic dysfunction, identifying molecular
biomarkers of fatigue, and testing alternative pioglitazone treatment regimens.
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Introduction
As of 2020, breast cancer (BC) is the most prevalent cancer globally, with over two million women diagnosed in
that year (1). BC incidence continues to increase worldwide, with the highest rates occurring in transitioned
countries, whereas the highest mortalities occur in transitioning countries (1). In the United States, the 43%
decrease in mortality since 1989 (2) can be attributed to enhanced screening, better diagnostics, and
advanced treatments (3). BC is a systemic disease and one of the most prevalent symptoms in BC patients is
fatigue, with BC-associated skeletal muscle (SkM) fatigue being reported to affect between 62% and 85% of
patients undergoing active treatment (4) and up to 66% of disease-free survivors (5). In contrast to these high
rates of fatigue, the estimated cachexia rate in BC patients is one of the lowest of all cancer types (6), although
rates can vary depending on the specific definition used. Fatigue persistence in disease-free cases
emphasizes the need for effective treatments across disease stages, and the importance of studying the
mechanistic underpinnings of BC-associated SkM fatigue. It has been suggested that BC patients with fatigue
have worse outcomes and higher mortality (7). Despite the rates of fatigue, quality-of-life impact, and potential
reduction in survival, there are currently no effective treatments to ameliorate this debilitating symptom.

The peroxisome proliferator-activated receptor (PPAR) family comprises three lipid-sensing nuclear
transcription factors: PPARɑ, -β/δ, and -γ (8). Collectively, PPARs are pivotal regulators of mitochondrial fatty
acid β-oxidation (9) (10), adipocyte differentiation and fat storage (11) (12), and insulin sensitivity (13). Our data
suggest that disruption in PPAR signaling is a driver of fatigue using a BC patient-derived orthotopic xenograft
(BC-PDOX) mouse model that recapitulates fatigue in the absence of cachexia (14) (15). Aberrations in PPAR
signaling can lead to disruption of mitochondrial bioenergetics and lipid accumulation (16) (17) as well as
transcriptome dysregulation (15).

Pioglitazone, a well-tolerated FDA-approved thiazolidinedione (TZD) and PPARγ-agonist, demonstrates a high
affinity for both PPARγ isoforms (1 and 2) (18), which are expressed in both humans and mice (19) (20), and is
indicated for the treatment of insulin resistance in type-2 diabetes mellitus (21). We have previously
demonstrated that pioglitazone restores transcriptomic profiles in SkM of BC-PDOX mice and is implicated as
a potential therapeutic option for treating BC-associated SkM fatigue (15). The aim of this study was to test the
efficacy of pioglitazone treatment for four weeks as an intervention to reduce SkM fatigue in BC-PDOX mice
implanted with HER2/neu overexpressing tumors. To explore the potential metabolic alterations that may
contribute to fatigue, we also performed untargeted metabolomics and lipidomics. We hypothesized that
treatment of BC-PDOX mice with pioglitazone for four weeks would demonstrate a reduction in fatigue of type
II muscles, a rescued transcriptomic profile, and an overall decrease in metabolic rate compared to non-drug
treated BC-PDOX mice.

Materials and Methods
Breast cancer patient-derived orthotopic xenograft (BC-PDOX) mouse model
We used 16 8-week old female NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG; RRID:IMSR_JAX:005557) mice obtained
from Jackson Laboratory (The Jackson Laboratory, Bar Harbor, ME, USA). All NSG mice were genotyped
using strain-specific probes to verify correct strain identity by Transnetyx (Transnetyx Inc., Cordova, TN, USA).
Mice were housed at 22 °C in the AAALAC accredited vivarium at West Virginia University (WVU) on a
standard 12:12 hr light:dark cycle in sterile polystyrene cages on soft-bedding and provided irradiated Tekklad
(Inotiv, Maryland Heights, MO, USA) 18% protein rodent diet (3.1 kcal∙g-1) and Sulfatrim supplemented water
(sulfamethoxazole, 0.26 mg∙mL-1; trimethoprim, 0.052 mg∙mL-1) Monday through Thursday and sterile water the
remaining days, all ad libitum. HER2/neu overexpressing human tumor samples were obtained from the
patient-derived xenograft (PDX) bank at WVU. Genetic comparability between the injected and original tumors
was validated via short tandem repeat (STR) profiling (Supplementary Figure 1), and similarity was calculated
using the following equation: % similarity = (# of Matching Alleles) / (# of Total Alleles Detected). To prepare
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PDXs for implantation, tumor fragments were minced and enzymatically dissociated using a Miltenyi Human
Tumor Dissociation Kit and Miltenyi gentleMACS Octo Dissociator with Heaters (Miltenyi Biotec, Bergisch
Gladbach, DE; RRID:SCR_020271). A single-cell suspension of a HER2/neu overexpressing PDX was
injected bilaterally at the fourth inguinal nipple using a sterile ½ inch 26-gauge needle. Approximately 2 x 106

cells were injected in 100 µL of a 1:1 (v/v) mixture of Cultrex basement membrane extract (BME) type 3
(Biotechne R&D Systems, Minneapolis, MN, USA) and sterile 1X phosphate buffered saline (PBS). Tumor
volumes were monitored at least once per week by calipers until a composite volume of 200 mm3 was reached,
followed by micro-ultrasound using Vevo F2 (VisualSonics, Bothell, WA, USA). Tumor 3D-volume was
calculated from captured ultrasound images using Vevo LAB (version 5.8.2). Mice were euthanized upon
completing treatment or earlier if they became moribund. Precise sample sizes used in each of the subsequent
analyses are provided in Supplementary Table 1. All procedures followed the protocols approved by the WVU
Institutional Animal Care and Use Committee (IACUC) and were conducted in accordance with the NIH
guidelines for animal research.

Pioglitazone preparation and dosing
BC-PDOX mice were randomized into either the pioglitazone- (PioTx) or vehicle-treated (vehicle) group. One
mouse was euthanized prior to study completion because of tumor ulceration and was excluded from all
analyses. Pioglitazone Hydrochloride (>98.0% purity) was purchased from TCI Chemicals (TCI Chemicals,
Portland, OR, USA; Product #: P1901) and prepared at a dosage of 30 mg·kg-1·day-1, assuming an average
body weight of 30 g, and dissolved by rocking for 1 hr at room temperature in 10% w/v
sulfobutylether-β-cyclodextrin (Captisol, hereafter vehicle) (Captisol, San Diego, CA, USA). The drug was
prepared weekly and was stored at 4 °C. Pioglitazone (0.9 mg per dose) or vehicle was thoroughly shaken to
account for drug settling and was administered to all mice for at least 28 days. Drug administration began at a
tumor volume of 600 mm3 and during study weeks 1, 2, and 4 was administered via daily oral gavage at 12 pm
(± 52 min) in a 150 µL bolus using 38 mm silicone-tipped 18-gauge plastic gavage needles (Pet Surgical,
Phoenix, AZ, USA). Drug administration during study week 3, while animals were monitored using indirect
calorimetry, was administered via drinking water. Drug concentration was based on historical water
consumption, and post-hoc drug dosage calculations yielded an average of 26 mg·kg-1·day-1 (18-30
mg·kg-1·day-1).

Bulk RNA isolation and sequencing
Tibialis anterior (TA) muscles from PioTx and vehicle NSG mice were harvested, flash-frozen in liquid nitrogen,
and stored at -80 °C until further processing. TA muscles were thawed and cut into pieces weighing ≤ 30 mg,
followed by mechanical dissociation using a TissueRuptor (Qiagen, Venlo, Limburg, NL). Bulk RNA was
isolated using the RNeasy Fibrous Tissue Mini Kit (Qiagen) according to the manufacturer’s protocol. A
NanoDrop spectrophotometer was used to quantify RNA concentration (336.4 ± 209.3 ng∙µL-1) and purity using
A260/280 values (2.11 ± 0.02). The isolated RNA was shipped to Admera Health (Admera Health, Plainfield,
NJ, USA) on dry ice for library preparation and sequencing. RNA integrity was assessed using an RNA
Tapestation (Agilent Technologies Inc., Santa Clara, CA, USA) and quantified by Qubit 2.0 RNA HS assay
(ThermoFisher, Massachusetts, USA). RNA integrity numbers (RIN) were ≥ 7.7 (Supplementary Figure 2a).
Poly(A) selection and cDNA libraries were constructed using the NEBNext Ultra II Directional RNA Library Prep
Kit for Illumina (New England BioLabs Inc., Massachusetts, USA). The final library size was approximately 430
bp with an insert size of approximately 300 bp. Illumina 8-nt dual indices were used. Samples were pooled at
equimolar concentrations and sequenced on an Illumina NovaSeq (Illumina, California, USA) with a read
length configuration of 150 PE for 40M paired-end reads per sample (20M in each direction). (BioProject ID:
PRJNA1076666 murine samples).

Bulk-RNAseq data analysis
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Paired reads had a 5’ trim of 13 bases and a 3’ trim of 87 bases, which were then aligned to the Ensembl
GRCm39.109 mouse reference genome using HISAT2 (version 2.2.1; RRID:SCR_015530) (22). RNA samples
(n=11) averaged 36,024,271 ± 10,109,476 reads per sample (Supplementary Figure 2b) with a 96.9 ± 0.21%
mapping rate to the GRCm39.109 genome. Raw read counts were generated using the featureCounts function
of Subread (version 2.0.3, RRID:SCR_012919) (23).

Exploratory analysis of raw read counts was performed using the iDEP (version 1.11) web application (24).
Raw counts were filtered with a minimum counts per million (CPM) of 10 in at least two samples; of this, 8275
genes remained. Count data were transformed using EdgeR (version 4.0.15; RRID:SCR_012802) (25) with a
pseudo count of four prior to k-means clustering (k=6) of the top 1000 genes (Supplementary Figure 2c) and
principal component analysis (PCA). Differential gene expression was performed using DESeq2 (version
1.42.0; RRID:SCR_015687) (26) with an FDR cutoff of 0.05, and a minimum fold-change of 2. Pathway
analysis was performed using GAGE (version 2.52.0; RRID:SCR_017067) (27) with minimum geneset size of
30 and an FDR cutoff of 0.05 using the following genesets: Gene Ontology (GO) biological process, GO
cellular component, GO molecular function, Reactome, and Kyoto Encyclopedia of Genes and Genomes
(KEGG). Significance for pathways was defined as an adjusted p-value of < 0.05.

Quantitative lipidomics
TA muscles from each animal were flash frozen and stored at -80 °C until being shipped on dry ice to Metware
Bio (Metware Bio, Woburn, MA, USA) for quantitative lipidomics according to the following procedures.
Samples were thawed on ice, and approximately 10 mg of each sample was homogenized using a ball-mill
grinder at 30 Hz for 20 s in 1 mL of methyl tert-butyl ether (MTBE):methanol (3:1, v/v) with internal standards
and then vortexed for 15 min. The mixture was added to 200 µL of water, vortexed for 1 min, incubated at 4 °C
for 10 min, and centrifuged at 13,500 x g for 10 min (4 °C). The upper phase (200 µL) was collected and dried
at 20 °C. The residue was reconstituted in 200 µL of acetonitrile:isopropanol (1:1, v/v), vortexed for 3 min, and
centrifuged at 13,500 x g for 3 min. The final supernatant (120 µL) was used for the LC-MS/MS analysis.

Ultra-performance liquid chromatography (UPLC) was performed using a Nexera LC-40 (Shimadzu, Kyoto,
Japan) with an Accucore C30 (2.6 μm, 2.1 mm × 100 mm) (Thermo Fisher Scientific Inc., Waltham, MA, USA)
column at a temperature of 45 °C, flow rate of 0.35 mL/min and injection volume of 2 µL. Linear ion trap (LIT)
and triple quadrupole (QQQ) scans were acquired using a triple quadrupole-linear ion trap LC-MS/MS QTRAP
6500+ (Sciex, Concord, ON, Canada) operating in positive and negative ion modes controlled by the Analyst
software (Sciex, version 1.6.3; RRID:SCR_015785). All elution gradients presented as percent mobile phase
A:percent mobile phase B. Elution gradients: 80:20 v/v at 0 min, 70:30 v/v at 2 min, 40:60 v/v at 4 min, 15:85
v/v at 9 min, 10:90 v/v at 14 min, 5:95 v/v at 15.5 min, 5:95 v/v at 17.3 min, 80:20 v/v at 17.5 min, 80:20 v/v at
20 min.

The electrospray ionization (ESI) source conditions were as follows: source temperature, 500 °C; ion spray
voltage (ISV) 5500 V (pos), -4500 V (neg); ion source gas I (GSI) 45 psi; ion source gas II (GSII) 55 psi; curtain
gas (CUR) 35 psi. Instrument tuning and mass calibration were performed using 10 and 100 μmol/L
polypropylene glycol solutions in the QQQ and LIT modes, respectively. QQQ scans were acquired in multiple
reaction mode (MRM) experiments with a collision gas (nitrogen) set to 5 psi. The declustering potential (DP)
and collision energy (CE) for individual MRM transitions were determined with further DP and CE
optimizations. A specific set of MRM transitions was monitored for each period according to the lipids eluted
within this period. A quality control (QC) sample was prepared from a mixture of all sample extracts to examine
the reproducibility of the metabolomics process. During data collection, a quality control sample was inserted
for approximately every 10 test samples. The percentages of the identified compound classes are shown in
Supplementary Figure 3a. The QC data are presented in Supplementary Figure 3b-e.
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Lipidomics data analysis
The software Analyst (Sciex, version 1.6.3; RRID:SCR_015785) was used to process raw mass spectral data.
Orthogonal partial least squares discriminant analysis (OPLS-DA) models were built for identified metabolites
using log2 transform + mean centering for each group comparison using MetaboAnalystR 4.0
(RRID:SCR_016723) (28). To prevent overfitting, 200 permutation tests were performed. The OPLS-DA model
validation is shown in Supplementary Figure 4a-c. For the two-group analysis, differential lipids were defined
as variable importance in projection (VIP) > 1 and p-value (Student’s t-test) < 0.05. All other analyses used unit
variance scaling (UV) when applicable with the following equation: x’ = (x-μ)/𝜎. Principal component analysis
(PCA) plots are shown in Supplementary Figure 4d-f. The identified lipids were annotated using the KEGG
compound database and were mapped to the KEGG pathway database.

The abundance of lipid subclasses were calculated using summed abundances for all lipids in the subclasses
per sample, and then subclass abundance was compared between PioTx and vehicle groups using Student's
t-test. Additional parent classes representing sums of grouped subclasses were also considered. Total
Ceramides reflect summed abundance of 57 lipids across 7 subclasses (Cer-AP, Cer-AS, Cer-NDS, Cer-NP,
Cer-NS, HexCer-AP, HexCer-NS), Fatty Acids and Derivatives reflect 124 lipids across 5 subclasses (FFA,
MG, TG, LNAPE, LPA), and Glycerophospholipids reflect 638 lipids across 16 subclasses (PC, PC-O, PE,
PE-O, PE-P, PG, PI, PS, LPC, LPC-O, LPE, LPC-O, LPE, LPE-P, LPG, LPI, LPS, PMeOH).

Untargeted and widely targeted metabolomics
The same TA muscles used in quantitative lipidomics were flash frozen and stored at -80 °C until being
shipped on dry ice to Metware Bio for untargeted and widely targeted metabolomics according to the following
procedures. Samples were thawed on ice, and approximately 20 mg of each sample was homogenized using a
ball-mill grinder at 30 Hz for 20 s in 400 µL methanol:water (7:3, v/v) with internal standards added to the
ground sample and mixed by shaking at 2500 rpm for 5 min. After 15 min on ice, samples were centrifuged at
13,500 x g for 10 min (4 °C), and 300 µL of supernatant was collected and stored at -20 °C for 30 min. The
samples were centrifuged again at 13,500 x g for 3 min (4 °C) and a 200 µL aliquot was used for LC-MS
analysis.

For untargeted metabolomics, UPLC was performed using an ExionLC 2.0 (Sciex) with an ACQUITY HSS T3
(2.1 mm × 100 mm, 1.8 µm) (Waters, Milford, MA, USA) column at a temperature of 40 °C, flow rate of 0.4
mL/min and injection volume of 5 µL. The settings were the same for widely targeted metabolomics, except for
an injection volume of 2 µL. Mass spectrometry was performed using a Quadrupole-Time of Flight TripleTOF
6600+ (Sciex) for untargeted and a tandem mass spectrometer (MS/MS) QTRAP® 6500+ (Sciex,
RRID:SCR_021831) for widely targeted metabolomics, both operating in positive and negative ion mode
controlled by Analyst software (Sciex; version 1.6.3). All elution gradients are presented as percent mobile
phase A:percent mobile phase B. Untargeted elution gradients: 95:5 v/v at 0 min, 10:90 v/v at 11 min, 10:90 v/v
at 12 min, 95:5 v/v at 12.1 min, and 95:5 v/v at 14 min. Widely-targeted elution gradients: 95:5 v/v at 0 min,
10:90 v/v at 10 min, 10:90 v/v at 11 min, 95:5 v/v at 11.1 min, 95:5 v/v at 14 min. For both untargeted and
widely targeted methods, mobile phase A was ultrapure water with 0.1% formic acid, and mobile phase B was
acetonitrile with 0.1% formic acid.

The untargeted electrospray ionization (ESI) source conditions were as follows: source temperature, 500 °C;
ISV 5500 V (pos), -4500 V (neg); GSI 50 (pos/neg); GSII 50 (pos/neg); CUR 25 (pos/neg); DP 80 (pos), -80
(neg); CE 30 (pos), -30 (neg); and collision energy speed (CES) 15 (pos/neg). The widely targeted ESI
conditions: source temperature, 500 °C; ISV 5500 V (pos), -4500 V (neg); GSI 50 psi; GSII 50 psi; CUR 25 psi;
and collision gas (CAD) was high. Instrument tuning and mass calibration were performed using 10 and 100
μmol/L polypropylene glycol solutions in triple-quadrupole (QQQ) and linear ion trap (LIT) modes, respectively.
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A specific set of MRM transitions was monitored for each period according to the metabolites eluted within this
period. Similar to quantitative lipidomics, the percentages of the identified compound classes are shown in
Supplementary Figure 5a, and QC samples were prepared in the same manner and the data are presented in
Supplementary Figure 5b-e.

Metabolomics data analysis
Raw peak intensities (intensity unit: CPS, counts per second) were preprocessed by imputing missing values
using ⅕ th of the minimum value of each metabolite. The coefficient of variation (CV) of the quality control (QC)
sample was calculated, and metabolites with CV < 0.3 were retained as final metabolites. Analyst software
(Sciex, version 1.6.3; RRID:SCR_015785) was used to process the raw mass spectral data. Internal standards
(IS) were added to QC samples, stability was assessed, and the CV of all IS was < 15%, with the highest value
being 2.3% (Supplementary Data 1). The OPLS-DA models were built as previously described, and the model
validation is shown in Supplementary Figures 6a-c. For the two-group analysis, differential metabolites were
defined as variable importance in projection (VIP) > 1 and p-value (Student’s t-test) < 0.05. All other analyses
used unit variance scaling (UV) when applicable with the following equation: x’ = (x-μ)/𝜎. PCA plots are shown
in Supplementary Figure 6d-f. The identified metabolites were annotated using the KEGG compound database
and were mapped to the KEGG pathway database. Pathways containing significantly dysregulated metabolites
were analyzed using metabolite set enrichment analysis (MSEA), and significance was determined using
hypergeometric tests. Combined pathway analysis was performed using Mummichog and GSEA in
MetaboAnalyst 6.0 (RRID:SCR_015539) with a pathway significance cutoff of 0.05.

Whole-animal indirect calorimetry and metabolic monitoring
To evaluate the live whole-animal metabolic activity, tumor groups were housed for 5 days in the
Oxymax-CLAMS system (Comprehensive Laboratory Animal Monitoring System; Columbus Instruments,
Columbus, OH, USA; RRID:SCR_016718). The environment was maintained at 22 °C with a sampling flow
rate of 0.5 liters per minute (LPM) and 800.98 mmHg of pressure, and the system was calibrated prior to each
experimental run. CLAMS was performed during the third week of pioglitazone treatment, which was provided
in drinking water at the same dosage as the oral gavage (30 mg·kg-1·day-1). Following a 13-17 hour acclimation
period, animals were monitored for 96 consecutive hours. One PioTx mouse and one vehicle mouse were
excluded from analysis for data integrity concerns arising from sampling discrepancies. Raw Oxymax-CLAMS
data were pre-processed for downstream statistical analysis using CLAMS Wrangler (version 1.0.5) and CalR
(version 1.3) (29) (30). The primary variables of interest were mean VO2 (ml∙hr-1), VCO2 (ml∙hr-1), respiratory
exchange ratio (RER), cumulative X- and Y-axis infrared beam breaks, cumulative food consumption, energy
expenditure (EE), and energy balance. Animal weights (grams) at the time of entry into Oxymax-CLAMS, and a
food energy density of 3.1 kcal∙g-1 was used for calculating EE and energy balance.

Ex vivo muscle function testing
Our mouse model of BC induced fatigue has been previously established (14) (31). Anesthesia was induced
with 4% isoflurane and maintained at 2.5%. The following muscles were bilaterally dissected for the evaluation
of absolute mass: TA, extensor digitorum longus (EDL), gastrocnemius, and soleus. Tibia length was
measured via calipers for muscle weight normalization. Ex vivo isometric analysis was performed on the EDL
and soleus using established laboratory protocols (32) (33). In brief, muscles were immediately transferred to
an oxygenated muscle stimulation bath containing Ringer’s solution (100 mM NaCl, 4.7 mM KCl, 3.4 mM
CaCl2, 1.2 mM KH2PO4, 1.2 mM MgSO4, 25 mM HEPES, and 5.5 mM D-glucose) that was maintained at 4 °C.
Muscle function testing was performed at 22 °C using the Aurora Scientific 1300A 3-in-1 Whole Animal System
(mouse) running Aurora Scientific 605A Dynamic Muscle Data Acquisition software (Aurora Scientific, Aurora,
ON, Canada). The muscle length was gradually increased to obtain the maximal twitch force response; this
muscle length was recorded as the optimal length (Lo). Muscle cross-sectional area (CSA) was calculated by
dividing the muscle mass by the product of the muscle density coefficient (1.06 g·cm3), muscle Lo, and the fiber
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length coefficient (EDL: 0.45, soleus: 0.69), this CSA value was used to calculate muscle-specific force (i.e.,
force mN·muscle CSA−1) (34) (35). Muscle contractile parameters obtained from isometric twitch contractions
included the peak isometric twitch force, contraction time (CT), ½ relaxation time (½ RT), rate of force
development (RFD), and rate of relaxation (RR).

With the muscle set at Lo, muscles were stimulated with 500 ms tetanic trains at increasing frequencies (5, 10,
25, 50, 80, 100, 120, and 150 Hz) to establish the force–frequency relationship. Each contraction was followed
by 2 min rest. Absolute isometric tetanic force was recorded at each stimulation frequency. Assessment of
skeletal muscle fatigue was performed using repeated 40 Hz tetanic trains that occurred once per second
lasting 330 ms each, for a total of 360 repetitions across 6 minutes (32). Peak force generated per repetition
was normalized to the first repetition force and reported as percent (%) change in force. With normalized peak
force plotted for each repetition, the area under the fatigue curve (AUC) was calculated for each muscle.

Statistical analyses
GraphPad Prism (version 10; RRID:SCR_002798) was used for statistical analyses, with significance set at an
alpha value of 0.05, unless otherwise specified. Two-tailed unpaired Student’s t-tests were used to compare
muscle weights normalized to tibia length, AUC, final tumor volumes, final body weights, and EDL and soleus
muscle isometrics, as described in Supplementary Tables 2 and 3, respectively. EDL and soleus fatigue were
analyzed using a repeated-measures two-way ANOVA with Geisser-Greenhouse correction and Šidák multiple
comparisons test. Tumor growth kinetics were analyzed using the exponential regression model V=V0ekt where
V represents volume in mm3, V0 is the volume at the start of treatment in mm3, k is the rate constant in days-1,
and t represents time in days relative to the start of treatment. Muscle force-frequency relationships were
analyzed using the 4 parameter logistic regression model P = Pmin + ((Pmax - Pmin)/(1 + (Kf/f)h)), where P
represents muscle force in mN and f represents stimulation frequency in Hz. The following parameters were
obtained from the force–frequency curve: minimum force (Pmin), maximum force (Pmax), half-frequency (Kf), and
the Hill coefficient (h). Kf is defined as the frequency at which the developed force is the midpoint between Pmin

and Pmax, where h describes the slope of the force–frequency logistic curve (36). Regression parameters were
compared between groups using two-tailed unpaired Student’s t-tests. Two-tailed Student’s t-tests were
performed on CLAMS metabolic variables to evaluate differences between vehicle and PioTx groups across
the full day period.

Results
Study overview and characterization of BC-PDOX mouse model
To validate equal tumor burden between the groups, we performed weekly ultrasound measurements and body
weight assessments. Figure 1a illustrates the experimental timeline, while Figure 1b outlines the utilization of
isolated muscles. For a consistent analysis, bulk RNA sequencing and metabolomics/lipidomics assays were
conducted on the contralateral tibialis anterior (TA) muscles of each animal. The extensor digitorum longus
(EDL) and soleus muscles, representing fast (Type II) and slow (Type I) twitch muscles, respectively, were
chosen for functional testing because of their differing fatigue responses. Tumor growth kinetics did not differ
between groups (p = 0.0870) with a V0 of 728 mm3 (SE ± 21.9) and a doubling time of 22.0 days (SE ± 1.01) for
the BC-PDOX Captisol-treated (vehicle) group (n=5) and a V0 of 705 mm3 (SE ± 19.5) and a doubling time of
23.7 days (SE ± 1.05) for the BC-PDOX pioglitazone-treated (PioTx) group (n=6) (Fig. 1c). Terminal tumor
volumes were also statistically equivalent between groups (Student’s t-test, p = 0.503), averaging 1647 mm3

(SD ± 258.2) for the vehicle group and 1519 mm3 (SD ± 335.0) for the PioTx group. Similarly, body weight did
not differ (p = 0.497), with the vehicle group averaging 25.9 g (SD ± 1.6) and the PioTx group averaging 26.6 g
(SD ± 1.5) (Supplementary Data 2). The original and passaged tumors demonstrated over 80% concordance in
their short tandem repeat (STR) profiles, suggesting the stability of the tumor model in the fifth implanted
passage (Supplementary Figure 1). NSG-specific genotyping probes (Il2rg WT, Il2rg KO, Scid Mutation)
confirmed the strain identity of all the mice. These results validated the BC-PDOX model, as evidenced by
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consistent tumor burdens and body weights across groups, as well as no large differences in the expected
tumor or mouse strain identity.

Figure 1. Overview and characterization of the BC-PDOX mouse model. (a) Experimental timeline. (b) Analysis of isolated
muscles. One TA muscle was used for bulk RNA sequencing, while the contralateral was analyzed using metabolomics and lipidomics.
The EDL and soleus muscles were used for ex vivo muscle function tests. (c) Exponential regression plot of longitudinal tumor
volumes. Times for each volume measurement were adjusted to set the treatment start date to t = 0. Colored dashed lines represent
combined tumor volume measurements for individual animals. Shaded regions depict the 95% prediction interval for each group. The
black dashed line is at 600 mm3 for reference. (a,b) Created with Biorender.com. TA, tibialis anterior; EDL, extensor digitorum longus;
CLAMS, comprehensive laboratory animal monitoring system; 1x TA refers to one TA muscle from each animal being used for bulk
RNA-seq, and one being used for metabolomics/lipidomics.

Whole-animal indirect calorimetry
Whole-animal indirect calorimetry was performed using the Oxymax-CLAMS system to examine the systemic
metabolic effects of the pioglitazone treatment. Body mass at entry into Oxymax-CLAMS did not differ between
treatment groups (p = 0.988), nor did the volume of water consumed while in Oxymax-CLAMS (p = 0.127). A
significantly lower average O2 consumption (ml∙hr-1) (p = 0.035) (Fig. 2a), and CO2 production (ml∙hr-1) (p =
0.022) (Fig. 2b) was observed in the PioTx mice. Similarly, cumulative energy expenditure (EE) (kcal∙hr-1) was
significantly lower in PioTx mice across the four day period (p = 0.035) (Fig. 2c), however, total food consumed
throughout this time did not differ (p = 0.788) (Fig. 2d). As such, cumulative energy balance across the four day
period was significantly lower in the vehicle group (p = 0.014), reflecting a larger net energy deficit in vehicle
mice. In addition to the presented analysis, there was no significant difference between groups for respiratory
exchange ratio (RER) (p = 0.860), locomotor activity (p = 0.998), or ambulatory activity (p = 0.670).
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Figure 2. Whole-animal indirect calorimetry. Violin plots comparing metabolic variables among vehicle (blue, n=4) and PioTx
(orange, n=5) mice. (a) Average oxygen consumption across the full day in ml∙hr-1. (b) Average carbon dioxide production across the
full day in ml∙hr-1. (c) Cumulative energy expenditure (kcal) across the 96 hour period. (d) Total food consumed (kcal), across the 96
hour period. The energy density of the food provided was 3.1 kcal∙g-1. * < 0.05.

Bulk RNA-seq of TA muscles
Bulk RNA sequencing was performed to confirm the expected action of pioglitazone interacting with PPARγ
and its subsequent influence on downstream gene targets. Principal component analysis (PCA) revealed
separation between the PioTx and vehicle groups, indicating distinct gene expression profiles. Principal
component (PC) 1 explained 31.8% of the variation and PC2 explained 26% of the variation (Fig. 3a;
Supplementary Figure 2d). Unnormalized gene expression counts are provided in Supplementary Data 3.

PPAR target genes. K-means cluster 5 showed enrichment of the PPAR signaling pathway (adj. p < 0.05, fold
change 6, KEGG:mmu03320), which was expected as a result of pioglitazone treatment (Supplementary
Figure 2e). Cluster 5 included several dysregulated genes within the PPAR pathway, including Fabp4, Fabp3,
Pltp, Scd1, Scd2, and Aqp7 (Supplementary Data 4). Regulation of established downstream genes of PPARγ:
Slc1a5 and Rbp4 appear downregulated following pioglitazone-treatment, whereas Slc25a1, Cidec, Rbp7,
Fabp4, Adipoq, Plin1, and Trarg1 appear upregulated (Fig. 3b). Gene set enrichment analysis (GSEA) further
supported the enrichment of the PPAR signaling pathway, with a normalized enrichment score (NES) of 1.37;
however, the FDR q-value was not significant at 0.071 (Supplementary Figure 2f).

Genes involved in oxidative phosphorylation. Kyoto Encyclopedia of Genes and Genomes (KEGG) sources
showed upregulation of the oxidative phosphorylation (KEGG:mmu00190) pathway in PioTx compared to
vehicle (adj. p < 0.001) (Fig. 3c; Supplementary Table 4). In particular, the vast majority of genes involved in
the electron transport chain (ETC) and ATP synthase were upregulated to some extent, with the most
upregulated being Nd4l and Cox7a (Fig. 3c). Other relevant upregulated pathways included citrate cycle (TCA
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cycle) (KEGG:mmu00020), carbon metabolism (KEGG:mmu01200) and fatty acid metabolism
(KEGG:mmu01212) (all adj. p < 0.05) (Supplementary Data 5).

Mitochondrial bioenergetic pathways. PioTx mice showed upregulation of mitochondrial bioenergetic-related
pathways compared with vehicle mice. Pathway analysis was performed using multiple gene set sources:
Gene Ontology (GO) Biological (Bio), Cellular (Cell), and Molecular (Mol); Reactome; and KEGG. Significantly
upregulated GO Bio pathways related to mitochondrial bioenergetics included, but were not limited to: proton
motive force-driven mitochondrial ATP synthesis (GO:0042776), ATP synthesis coupled electron transport
(GO:0042773), respiratory electron transport chain (GO:0022904), and aerobic respiration (GO:0009060) (all
adj. p < 0.001) (Fig. 3d; Supplementary Table 4; Supplementary Data 6). Similar trends were observed in PioTx
GO Cell pathways. Significantly upregulated pathways included, but were not limited to: oxidoreductase
complex (GO:1990204), inner mitochondrial membrane protein complex (GO:0098800), mitochondrial
respirasome (GO:0005746), and NADH dehydrogenase complex (GO:0030964) (all adj. p < 0.001) (Fig. 3e;
Supplementary Table 4; Supplementary Data 7). Pathways from Reactome further supported the overall
observed trend of mitochondrial bioenergetic pathway upregulation following pioglitazone treatment, including
complex I biogenesis (R-MMU-6799198), respiratory electron transport (R-MMU-611105), and pyruvate
metabolism and Citric Acid TCA cycle (R-MMU-71406) (all adj. p < 0.001) (Supplementary Table 4;
Supplementary Data 9). All adjusted p-value significant pathways for each genset source are shown in
Supplementary Data 5-9. Overall, pioglitazone administration was associated with the upregulation of
numerous pathways involved in mitochondrial bioenergetics, as corroborated by multiple gene set analyses.
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Figure 3. Bulk RNA sequencing of the tibialis anterior. (a) 2D PCA plot of bulk RNA-seq from the PioTx (orange, circle; n=6) and
vehicle (blue, cross; n=5) groups. (b) Volcano plot of downregulated (green, left) and upregulated (red, right) genes comparing the
PioTx and vehicle groups. The genes highlighted are downstream target genes of PPARγ. Downregulated: Slc1a5 and Rbp4.
Upregulated: Slc25a1, Cidec, Rbp7, Fabp4, Adipoq, Plin1, and Trarg1. (c) KEGG pathway diagram depicting PioTx vs vehicle
upregulated (red) and downregulated (green) genes involved in oxidative phosphorylation. (d) Network plot of the top 15 GO Biological
pathways for PioTx versus vehicle, all of which are upregulated (red). The cutoff threshold for association with another pathway was
30% of genes shared. Opaque nodes represent more significantly enriched gene sets. Thicker connecting lines represent more
overlapped genes. (e) Ridgeplot of top 10 GSEA enriched GO Cellular pathways for PioTx vs vehicle. NES, normalized enrichment
score.

Quantitative lipidomics in tibialis anterior
Quantitative lipidomics (QL) was performed to explore changes in lipid abundance. A total of 901 lipids were
detected across all samples after data filtering. Differential lipids were as follows: PioTx vs. vehicle, 66 down
and 4 up; vehicle vs. naive NSG, 60 down and 18 up; PioTx vs. naive NSG, 116 down and 9 up. The total
abundance of lipid content showed slight variation between groups, with the naive NSG having the highest
abundance (117,734 nmol∙g-1), followed by the vehicle (111,762 nmol∙g-1) and PioTx (105,282 nmol∙g-1).
Differential lipids in vehicle vs. naive NSG and PioTx vs. vehicle groups are shown in Fig. 4a and 4b,
respectively. Vehicle vs. naive NSG shared 7 of the significantly dysregulated lipids with PioTx vs. vehicle. Of
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the top 20 differential lipids in the vehicle vs. naive NSG group, 11 were upregulated and 9 were
downregulated. In PioTx vs. vehicle, 2 were upregulated and 18 were downregulated.

Ceramides. One of the most prominent differences observed in lipid abundance is that of the ceramides, which
in our dataset is composed of the classes ceramide (Cer) and hexosylceramide (HexCer). The overall
abundance of Total Ceramides (Cer+HexCer) was significantly lower in the PioTx group compared to the
vehicle (p = 0.048) (Fig. 4c). Ceramide subclasses include alpha-hydroxy fatty acid-phytosphingosine (AP) (p =
0.173), alpha-hydroxy fatty acid-sphingosine (AS) (p = 0.272), non-hydroxy fatty acid-dihydrosphingosine
(NDS) (p = 0.185), non-hydroxy fatty acid-phytosphingosine (NP) (p = 0.167), and non-hydroxy fatty
acid-sphingosine (NS) (p = 0.074). HexCer subclasses include HexCer-AP (p = 0.173) and HexCer-NS (p =
0.848). The abundance for the 7 individual ceramide subclasses did not significantly differ, though some
trended towards a greater abundance in the vehicle group (Fig. 4d).

Other subclass abundances. The differences in lipid abundance between the subclasses across the sample
groups are plotted in Fig. 4d. Parent groups Fatty Acids and Derivatives (p = 0.516) and Glycerophospholipids
(p = 0.814) did not differ between PioTx and vehicle groups. Individual subclasses that were significantly
different between groups were all within the Glycerophospholipid parent class, including
alkyl-phosphatidylcholine (PC-O) (p = 0.003), alkenyl-phosphatidylethanolamine (PE-P) (p = 0.007), and
phosphatidylinositol (PI) (p = 0.025), in which the vehicle group was significantly greater in abundance. Other
subclasses that trended towards significance include greater abundances in the vehicle group for cholesterol
(p = 0.095) and alkyl-phosphatidylethanolamine (PE-O) (p = 0.056), and a greater abundance in the PioTx
group in triacylglycerol (TG) (p = 0.083). All other subclasses did not differ in lipid abundance between PioTx
and vehicle groups.
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Figure 4. Quantitative lipidomics of the TA muscles. (a,b) Volcano plots representing log2 fold-change (log2FC) on the horizontal
axis and -Log10(p-value) on the vertical axis of downregulated (green) and upregulated (red) lipids in vehicle (n=5) vs. naive NSG (n=4)
in a and PioTx (n=6) vs. vehicle groups in b. The horizontal dotted line represents the -log10(p-value) equivalent of p = 0.05, and the
vertical dotted line is at a log2FC of zero. (c) Violin plot representing the significant difference in total ceramide abundance between
PioTx and vehicle groups. (d) Violin plots of raw lipid abundance per subclass in nmol∙g-1. (c,d) The black horizontal dotted line
represents the mean lipid abundance for naive NSG. The gray horizontal dotted lines represent quartiles. Complete lipid subclass
names are defined in Supplementary Table 5. * < 0.05.

Untargeted metabolomics in tibialis anterior
To explore the changes in metabolite abundance as a result of pioglitazone treatment, we performed
untargeted metabolomics. Across all samples, we detected 1186 metabolites after data filtering. Differential
metabolites were as follows: PioTx vs. vehicle, 79 down and 46 up; vehicle vs. naive NSG, 65 down and 49 up;
PioTx vs. naive NSG, 133 down and 73 up. Vehicle vs. naive NSG shared 14 of the significantly dysregulated
metabolites with PioTx vs. vehicle.
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Differential metabolites. Differential metabolites in vehicle vs. naive NSG and PioTx vs. vehicle groups are
shown in Fig. 5a and 5b, respectively. Comparison of the top 10 differential metabolites between PioTx vs.
vehicle and vehicle vs. naive NSG revealed two common metabolites, N-butyrylglycine and Met-Ser
(methionyl-serine). N-Butyrylglycine was significantly upregulated in vehicle vs. naive NSG (p = 0.00710,
Log2FC = 1.18) and downregulated in PioTx vs. vehicle (p = 0.0106, Log2FC = -1). Met-Ser is significantly
downregulated in vehicle vs. naive NSG (p = 0.0108, Log2FC = -7.97) and proportionally upregulated following
pioglitazone (p = 0.0446, Log2FC = 6.45). The reversal of these metabolite levels suggests a potential role of
pioglitazone in modifying the metabolic state of SkM affected by BC.

Amino acid metabolism. Combined pathway analysis using mummichog and GSEA identified numerous
dysregulated pathways involved in amino acid metabolism when comparing vehicle vs. naive NSG (Fig. 5c).
Metabolite set enrichment analysis (MSEA) comparing vehicle and naive NSG further supports amino acid
metabolism disruption (Supplementary Figure 7a). However, pioglitazone did not appear to ameliorate
dysregulation of these pathways (Fig. 5d, Supplementary Figure 7b).
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Figure 5. Untargeted metabolomics of the TA muscles. (a,b) Volcano plots representing log2 fold-change (log2FC) on the horizontal
axis and -Log10(p-value) on the vertical axis of downregulated (green) and upregulated (red) metabolites in vehicle (n=5) vs. naive
NSG (n=4) in a and PioTx (n=6) vs. vehicle in b. The horizontal dotted line represents the -log10(p-value) equivalent of p = 0.05, and
the vertical dotted line is at a log2FC of zero. (c) Scatter plot of significant integrated pathway activity results from both GSEA
(horizontal axis) and mummichog (vertical axis) in vehicle versus naive NSG. P-values are shown as -log10 transformed values. (d)
Scatter plot of significant integrated pathway activity results from both GSEA (horizontal axis) and mummichog (vertical axis) in PioTx
versus vehicle. P-values are shown as -log10 transformed values. (c,d) MetaboAnalyst 6.0 was used for pathway analysis and figure
generation. Bottom-left quadrant represents not significant pathways, top-left (blue circles) significant mummichog pathways,
bottom-right (green circles) significant GSEA pathways, and top-right (red circles) significant pathways in both GSEA and mummichog.
The significance threshold for both combined pathway analyses was ɑ = 0.05.

Muscle fatigue and isometric analysis
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Muscle function testing was performed ex vivo to quantitatively evaluate isometric and fatigue properties in the
EDL and soleus, which represent fast-twitch and slow-twitch predominant muscles, respectively.

Muscle weights. All muscles were weighed immediately after isolation. Muscle weights were normalized to
tibial length to account for variations in body size. No significant differences in normalized weights between the
PioTx and vehicle groups were found in the EDL (p = 0.147), soleus (p = 0.416), TA (p = 0.083), and
gastrocnemius (p = 0.741) (Fig. 6a, Supplementary Table 6).

Fatigue testing. Figure 6b shows the normalized EDL force output (percent change from the first rep) over the
course of 360 isometric contractions occurring at 40 Hz. The fatigue curves for each group showed no
significant separation. No significant difference in the AUC was found between the PioTx and vehicle groups (p
= 0.596) (Fig. 6c). The same analysis revealed no shifts in the fatigue curve for the soleus muscle or significant
differences in the AUC between groups (Supplementary Figure 8a-b).

Isometric contractile metrics. Pioglitazone treatment did not result in any significant differences in any of the
measured EDL or soleus isometric contractile properties (Supplementary Tables 2 and 3, respectively). The
force-frequency relationship (FFR), which represents the interaction between muscle force production and the
stimulation frequency used to induce muscle contraction, was established for the fast EDL and slow soleus
muscles. We observed no differences in the overall FFR in the fast EDL and slow soleus muscles in our study
when comparing PioTx and vehicle groups (Supplementary Figure 8c-f).

Figure 6. Ex vivo muscle weight and EDL functional testing. (a) Skeletal muscle weights (mg) for vehicle (blue, left; n=9) and PioTx
groups (orange, right; n=12) normalized to tibial length (mm) from left to right for the soleus, tibialis anterior (TA), extensor digitorum
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longus (EDL), and gastrocnemius, respectively. No significant differences were observed between the groups in any muscle. Black
dotted lines represent the mean normalized muscle weights of the soleus (0.38), TA (2.61), EDL (0.49), and gastrocnemius (7.1) for a
naive NSG mouse. (b) Normalized EDL fatigue curves for PioTx (n=6) and vehicle (n=5) groups. Two-way repeated-measures ANOVA
of EDL contractions normalized to the first repetition. Error bars represent standard error of the mean (SE). (c) Area under the curve
(AUC) for data presented in b for the vehicle (blue, left) and PioTx (orange, right) groups. There were no significant differences between
the groups. (b,c) Black dotted lines represent the mean EDL fatigue and corresponding mean AUC (mean=918.10) for a naive NSG
mouse. TL, tibia length.

Discussion
In this preclinical drug trial, we examined the metabolic effects of pioglitazone treatment in SkM derived from
PDX-implanted mice as a potential therapeutic agent for the treatment of BC-induced fatigue. Whole-animal
indirect calorimetry showed significant decreases in O2 consumption, CO2 production, and energy expenditure
after pioglitazone treatment, which is consistent with the known effects of pioglitazone on metabolism (37) (38).
Overall, these findings suggested a decrease in metabolic activity as a result of pioglitazone treatment.
Additionally, RER showed no significant differences between the groups, indicating no shift in substrate
utilization for energy production. Based on our data, decreased metabolic rate was not correlated with less
activity.

Beyond improving insulin resistance, pioglitazone has been shown to improve skeletal muscle mitochondrial
function in type 2 diabetic (T2D) mice by increasing ADP-dependent mitochondrial respiration, complex I and
III activities, and reducing oxidative stress (39). In human skeletal muscle from T2D patients, pioglitazone
improves fatty acid metabolism and phosphocreatine usage (40), along with increasing the abundance of some
ATP synthesis-related proteins (41). Research into the effects of pioglitazone in treating BC-induced SkM
alterations is limited, but our laboratory has previously shown that as little as 2 weeks of pioglitazone therapy is
associated with the restoration of mitochondrial-associated pathways in skeletal muscles of BC-PDOX mice at
the transcript level (15).

Following 4-weeks of pioglitazone treatment, there was considerable restoration in the transcriptomic profile of
the SkM from PioTx mice despite the presence of BC without an observed concomitant restoration in fatigue
via ex vivo testing. This lack of improvement suggests that permanent or long-term changes may contribute to
fatigue. One possible reason for this is alterations in the availability, structure, or function of proteins involved in
biogenesis. While we demonstrated gene upregulation, the turnover rate for proteins in mouse cardiac
mitochondria can range from hours to months (42), suggesting that any defects in mitochondrial protein
function may persist beyond the 28 day treatment duration. In addition to changes in bioenergetic pathways,
alterations in structural and contractile proteins within skeletal muscle may also be a contributing factor that
warrants further study.

Dysregulation of lipid subclasses has been previously associated with cancer cachexia. One study examined
plasma from both cachectic mice and humans and found decreases in LPC lipid species and increases in
ceramides (43). Our data in skeletal muscles followed the same trend of elevated ceramides when comparing
vehicle to naive NSG mice with overall total ceramide abundance being increased in the vehicle group.
Pioglitazone treatment significantly decreased total ceramide levels compared to vehicle treated mice. One
role of ceramides is to serve as a secondary messenger in the sphingomyelin (SM) signaling pathway. Despite
the significant decrease in total ceramide abundance following pioglitazone treatment, PioTx SM levels mirror
the vehicle group, both of which are lower than naive NSG. Interestingly, the literature shows a relationship
between insulin resistance and prominent ceramide accumulation (44), although one study showed higher
levels in predominantly oxidative muscles and minimal changes in glycolytic (45), whereas our study examined
a predominantly glycolytic muscle. Intramyocellular accumulation of ceramides has been found to disrupt
insulin signaling (46). The marked increase in ceramide levels seen in the tumor-bearing vehicle-treated mice
should be explored in future studies, as well as the potential contributions to fatigue.
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N-Butyrylglycine was found to be upregulated in vehicle mice compared to naive NSG and was subsequently
downregulated following pioglitazone treatment. It is a metabolite of fatty acid breakdown that can be found in
body fluids, the elevation of which is associated with mitochondrial fatty acid β-oxidation (FAO) dysfunction,
particularly short-chain acyl-CoA dehydrogenase deficiency (SCAD) (47). The amino acid intermediate
metabolite methionyl-serine (Met-Ser) was greatly downregulated in the vehicle group and proportionally
upregulated following pioglitazone treatment. Although the literature directly mentioning Met-Ser is sparse,
dysfunction of amino acid metabolism was a common theme in our data. MSEA revealed three significantly
enriched pathways in vehicle vs. naive NSG: pantothenate and CoA biosynthesis; valine, leucine, and
isoleucine degradation; and valine, leucine, and isoleucine biosynthesis (all FDR-corrected p < 0.05). The hit
compounds in the pantothenate and CoA biosynthesis pathways were L-Valine, pantetheine, and uracil.
However, these pathways were not significantly enriched in PioTx vs. vehicle, suggesting that pioglitazone
treatment has minimal restorative benefits on these pathways.

Given the upregulation of a significant number of mitochondrial bioenergetic-associated pathways following
pioglitazone therapy, it was disappointing that we were unable to detect preservation of muscle force
production in our fatigue protocol following pioglitazone treatment in BC-PDOX mice. The fatigue protocol was
based on the seminal paper by Burke et. al. (48), in which motor units were stimulated at 40Hz for 330ms
every second. These stimulation parameters were specifically selected to differentiate between the effects of
force output due to repeated neuromuscular activation and failure of fiber activation. Our data in isolated EDL
skeletal muscles are consistent with this original report in that force decline was observed after 30 s and was
dramatically lower after 60-90 s of stimulation (48). When we analyzed the FFR, a 40 Hz stimulation of an
isolated EDL muscle would produce approximately 35-40% of the maximal tetanic force. Thus, each
stimulation of the fatigue protocol is a submaximal contraction of less than 50% of the theoretical maximum
force. Although Burke was able to use this protocol to characterize fatigability differences in individual motor
units (48), the protocol may not be sensitive enough to determine improvements in force production due to any
specific energy system contribution. The fatigue protocol is likely affected by the interplay of the three main
energy systems in skeletal muscle: ATP-PCr, Glycolysis, and Oxidative Phosphorylation. It has been estimated
that energy supply to a working muscle during a 30 s sprint can be accounted for by 53% ATP-PCr, 44%
glycolysis and 28% mitochondrial respiration (49) (50). Therefore, we suggest that although we have been able
to use this protocol to quantify a greater rate of force loss following tumor growth (51) (14), this protocol is likely
affected by numerous interconnected mechanisms within skeletal muscle that underlie metabolism and energy
production. Furthermore, while mitochondrial respiration likely contributes to energy production during this
fatigue protocol, the relative contribution of these pathways during the first 1-2 minutes of the protocol may be
too low to be quantified. We are actively investigating additional methods for assessing muscle fatigability in
our BC-PDOX mouse model.

Limitations. Although this study provides novel insights into the effects of pioglitazone treatment on BC-induced
changes in the SkM metabolome and lipidome, there are some limitations that should be considered. Due to
inherent variations in the rate of tumor progression, animals did not start and end whole-animal indirect
calorimetry uniformly. While housed in the Oxymax-CLAMS system, pioglitazone was delivered in drinking
water and not by oral gavage, so the dosage consumed varied slightly during this period. After conversion from
human to animal dosage, as described here (52), the dosage of pioglitazone administered is approximately five
times that approved for humans, which may limit translatability. We only examined one tumor subtype
(HER2/neu overexpressing) in this study, and thus could not speak to other similar or differing effects in other
BC subtypes. The necessity of using an immunodeficient mouse to successfully engraft PDX tumors precludes
any insight into the influence of the immune system on the -omics examined in our model.
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Future directions. PPARγ expression within SkM is relatively low. Our laboratory has demonstrated that IL-15
treatment of muscle in vitro induces the expression of PPARδ and PGC1α in a dose- and time-dependent
manner (53), as well as PPARγ and PPARα (unpublished observations). Transgenic mice with greater IL-15
content in SkM also contained correspondingly greater PPARδ and PGC1α (32). With IL-15 in development as
an immuno-oncology agent (54) (55), we are pursuing the concept of IL-15 pre-treatment for the induction of
PPAR expression in SkM to potentiate the effects of pioglitazone. Other TZDs have a higher binding affinity for
PPARγ than pioglitazone, such as rosiglitazone and lobeglitazone, the latter of which is 12x greater resulting in
a lower effective dose (56). However, the lack of FDA approval or market acceptance limits the translatability of
trialing these drugs. The field would benefit from future studies exploring the use of TZDs or other drugs and
concomitant chemotherapy to explore the reduction in fatigue potential while undergoing active treatment. A
logical next step would be to further explore the effects of BC on SkM metabolism to elucidate the full extent of
dysregulation. This should be done using multiple BC subtypes and immunocompetent models to understand
the contribution of the immune system to metabolic dysregulation in SkM. The secondary interaction of
pioglitazone with the outer mitochondrial membrane protein, mitoNEET, and its potential role in the metabolic
changes presented here should be explored further.

Conclusions
In summary, this study found that 4 weeks of pioglitazone treatment in HER2/neu overexpressing
patient-derived xenograft implanted mice resulted in decreased metabolic activity, upregulation of mitochondrial
bioenergetic pathways, partial restoration of dysregulated metabolites and lipid content, and no functional
improvement of ex vivo muscle fatigue. Further research is needed to fully elucidate the extent of metabolic
and lipid dysregulation in skeletal muscle resulting from BC. Pioglitazone may play a role in the successful
treatment of BC-induced skeletal muscle dysregulation that leads to fatigue. Future studies should focus on
profiling systemic metabolic dysfunction, identifying molecular biomarkers of fatigue, and testing alternative
pioglitazone treatment regimens.
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